Multi-shell diffusion signal recovery from sparse measurements
نویسندگان
چکیده
منابع مشابه
Sparse Signal Recovery from Nonadaptive Linear Measurements
The theory of Compressed Sensing , the emerging sampling paradigm ‘that goes against the common wisdom’ , asserts that ‘one can recover signals in R from far fewer samples or measurements , if the signal has a sparse representation in some orthonormal basis, from m ≈ O(klogn), k ≪ n nonadaptive measurements . The accuracy of the recovered signal is as good as that attainable with direct knowled...
متن کاملSparse Multi-Shell Diffusion Imaging
Diffusion magnetic resonance imaging (dMRI) is an important tool that allows non-invasive investigation of neural architecture of the brain. The data obtained from these in-vivo scans provides important information about the integrity and connectivity of neural fiber bundles in the brain. A multi-shell imaging (MSI) scan can be of great value in the study of several psychiatric and neurological...
متن کاملSparse Signal Recovery from Quadratic Measurements via Convex Programming
In this paper we consider a system of quadratic equations |〈zj ,x〉|2 = bj , j = 1, ...,m, where x ∈ R is unknown while normal random vectors zj ∈ R and quadratic measurements bj ∈ R are known. The system is assumed to be underdetermined, i.e., m < n. We prove that if there exists a sparse solution x i.e., at most k components of x are non-zero, then by solving a convex optimization program, we ...
متن کاملSparse Recovery from Saturated Measurements
A novel theory of sparse recovery is presented in order to bridge the standard compressive sensing framework and the one-bit compressive sensing framework. In the former setting, sparse vectors observed via few linear measurements can be reconstructed exactly. In the latter setting, the linear measurements are only available through their signs, so exact reconstruction of sparse vectors is repl...
متن کاملJoint-sparse recovery from multiple measurements
The joint-sparse recovery problem aims to recover, from sets of compressed measurements, unknown sparse matrices with nonzero entries restricted to a subset of rows. This is an extension of the single-measurement-vector (SMV) problem widely studied in compressed sensing. We analyze the recovery properties for two types of recovery algorithms. First, we show that recovery using sum-of-norm minim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Medical Image Analysis
سال: 2014
ISSN: 1361-8415
DOI: 10.1016/j.media.2014.06.003